Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T.
نویسندگان
چکیده
In Arabidopsis thaliana, the genes FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) have antagonistic roles in regulating the onset of flowering: FT activates and TFL1 represses flowering. Both encode small, closely related transcription cofactors of ∼175 amino acids. Previous studies identified a potential ligand binding residue as well as a divergent external loop as critical for the differences in activity of FT and TFL1, but the mechanisms for the differential action of FT and TFL1 remain unclear. Here, we took an unbiased approach to probe the importance of residues throughout FT protein, testing the effects of hundreds of mutations in vivo. FT is surprisingly robust to a wide range of mutations, even in highly conserved residues. However, specific mutations in at least four different residues are sufficient to convert FT into a complete TFL1 mimic, even when expressed from TFL1 regulatory sequences. Modeling the effects of these mutations on the surface charge of FT protein suggests that the affected residues regulate the docking of an unknown ligand. These residues do not seem to alter the interaction with FD or 14-3-3 proteins, known FT interactors. Potential candidates for differential mediators of FT and TFL1 activities belong to the TCP (for TEOSINTE BRANCHED1, CYCLOIDEA, PCF) family of transcription factors.
منابع مشابه
The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.
The transition to flowering involves major changes in the shoot apical meristem and in the fate of existing leaf primordia. Transcripts of the Arabidopsis thaliana flowering-promoting gene FLOWERING LOCUS T (FT) are present in leaf tissue but can also promote flowering when artificially introduced into the meristem. FT may normally act in the leaf and/or the meristem, initiating or constituting...
متن کاملArabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time.
Plants flower in an appropriate season to allow sufficient vegetative development and position flower development in favorable environments. In Arabidopsis, CONSTANS (CO) and FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1) promote flowering by inducing FLOWER LOCUS T (FT) expression in the long-day afternoon. The CO protein is present in the morning but could not activate FT expression due to unknown...
متن کاملOverexpression of AtBMI1C, a Polycomb Group Protein Gene, Accelerates Flowering in Arabidopsis
Polycomb group protein (PcG)-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VR...
متن کاملThe FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar.
Genes in the FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1) family have been shown to be important in the control of the switch between vegetative and reproductive growth in several plant species. We isolated nine members of the FT/TFL1 family from Lombardy poplar (Populus nigra var. italica Koehne). Sequence analysis of the members of the FT/TFL1 family revealed considerable homology with...
متن کاملSpecification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development
In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2014